	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Space Physics	Forces Physics	Properties and changes	<u>Animals</u>	Living things and	Properties and
	1) Describe the	1) Explain that unsupported	of materials Chemistry	including	their habitats	changes of materials
	movement of the Earth,	objects fall towards the Earth	1) Compare and group	<u>humans Biology</u>	Biology	Chemistry
	and other planets,	because of the force of gravity	together everyday	1) Describe the	1) Describe the	1) Compare and
	relative to the Sun in the	acting between the Earth and	materials on the basis of	changes as	differences in the	group together
	solar system.	the falling object.	their properties,	humans develop	life cycles of a	everyday materials
	2) Describe the	2) Identify the effects of air	including their hardness,	to old age.	mammal, an	on the basis of their
	movement of the Moon	resistance and water	solubility, transparency,	Key vocabulary	amphibian, an	properties, including
	relative to the Earth.	resistance that act between	conductivity (electrical	Life cycle,	insect and a bird.	their hardness,
YEAR	3) Describe the Sun,	moving surfaces.	and thermal), and	reproduce,	2) Describe the life	solubility,
FIVE	Earth and Moon as	3) Identify the effects of	response to magnets.	sexual, sperm,	process of	transparency,
	approximately spherical	friction, that act between	2) Give reasons, based	fertilises, egg, live	reproduction in	conductivity
	bodies.	moving surfaces.	on evidence from	young,	some plants and	(electrical and
	4) Use the idea of the	4) Recognise that some	comparative and fair	metamorphosis,	animals.	thermal), and
	Earth's rotation to	mechanisms, including levers,	tests, for the particular	asexual,	Key vocabulary	response to magnets.
	explain day and night.	pulleys and gears, allow a	uses of everyday	plantlets,	Life cycle,	2) Give reasons,
	5) Use the idea of the	smaller force to have a	materials, including	runners, bulbs,	reproduce, sexual,	based on evidence
	Earth's rotation to	greater effect.	metals, wood and	cuttings	sperm, fertilises,	from comparative
	explain the apparent	Key vocabulary	plastic.	Working	egg, live young,	and fair tests, for the
	movement of the Sun	Force, gravity, Earth, air	3) Know that some	scientifically	metamorphosis,	particular uses of
	across the sky.	resistance, water resistance,	materials will dissolve in	Plan different	asexual, plantlets,	everyday materials,
	Key vocabulary	friction, mechanisms, simple	liquid to form a solution,	types of scientific	runners, bulbs,	including metals,
	Earth, Sun, Moon,	machines, levers, pulleys,	and describe how to	enquiries to	cuttings	wood and plastic.
	Mercury, Jupiter, Saturn,	gears	recover a substance	answer	Working	3) Know that some
	Venus, Mars, Uranus,	Working scientifically	from a solution.	questions,	scientifically	materials will dissolve
	Neptune	Plan different types of	4) Use knowledge of	including	Report and	in liquid to form a
	Spherical, Solar system,	scientific enquiries to answer	solids, liquids and gases	recognising and	present findings	solution, and describe
	rotates, star, orbits,	questions, including	to decide how mixtures	controlling	from enquiries,	how to recover a
	planets, axis	recognising and controlling	might be separated,	variables where	including	substance from a
	Working scientifically	variables where necessary.	including through	necessary.	conclusions,	solution.
	Plan different types of	Take measurements, using a	filtering, sieving and	Take	causal	4) Use knowledge of
	scientific enquiries to	range of scientific	evaporating.	measurements,	relationships and	solids, liquids and
	answer questions,	equipment, with increasing		using a range of	explanations of	gases to decide how

including recognising and controlling variables where necessary.

Take measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate.

Record data and results of

Record data and results o increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs.

Use test results to make predictions to set up further comparative and fair tests.

Report & present findings from enquiries, inc conclusions, causal relationships & explanations of & degree of trust in results, in oral & written forms such as displays & other presentations.

Identify scientific evidence that has been used to support or refute ideas or arguments.

accuracy and precision, taking repeat readings when appropriate.

appropriate.
Use test results to make predictions to set up further comparative and fair tests.
Report and present findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations.

5) Demonstrate that dissolving, mixing and changes of state are reversible changes.

reversible changes.
6) Explain that some changes result in the formation of new materials, & that this kind of change is not usually reversible, inc changes associated with burning & the action of acid on bicarbonate of soda.

Key vocabulary

Thermal/electrical insulator/conductor, change of state, mixture, dissolve, solution, soluble, insoluble, filter, sieve reversible/non-reversible change, burning, rusting, new material.

Working scientifically

Plan different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary.

increasing accuracy and precision, taking repeat readings when appropriate. Record data and results of increasing complexity using scientific diagrams and labels. classification keys, tables, scatter graphs, bar and line graphs. Use test results to make predictions to set up further comparative and fair tests. Report & present findings from enquiries, inc conclusions, causal relationships & explanations of & degree of trust in

scientific

equipment, with

and degree of trust in results, in oral and written forms such as displays and other presentations. Plan different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary. Take measurements. using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate. Use test results to make predictions to set up further comparative and fair tests. **Identify scientific** evidence that has been used to

support or refute

mixtures might be separated, including through filtering, sieving and evaporating.

5) Demonstrate that

- 5) Demonstrate that dissolving, mixing and changes of state are reversible changes.
- 6) Explain that some changes result in the formation of new materials, & that this kind of change is not usually reversible, inc changes associated with burning & the action of acid on bicarbonate of soda.

Key vocabulary

Thermal/electrical insulator/conductor, change of state, mixture, dissolve, solution, soluble, insoluble, filter, sieve reversible/non-reversible change, burning, rusting, new material.

	Take measurements,	results, in oral &	ideas or	Working
	using a range of scientific	written forms	arguments.	scientifically
	equipment, with	such as displays	Record data and	Plan different types of
	increasing accuracy and	& other	results of	scientific enquiries to
	precision, taking repeat	presentations.	increasing	answer questions,
	readings when	Identify scientific	complexity using	including recognising
	appropriate.	evidence that has	scientific diagrams	
	Record data and results	been used to	and labels,	variables where
	of increasing complexity	support or refute	classification keys,	necessary.
	using scientific diagrams	ideas or	tables, scatter	Take measurements,
	and labels, classification	arguments.	graphs, bar and	using a range of
	keys, tables, scatter		line graphs.	scientific equipment,
	graphs, bar and line		Identify scientific	with increasing
	graphs.		evidence that has	accuracy and
	Use test results to make		been used to	precision, taking
	predictions to set up		support or refute	repeat readings
	further comparative and		ideas or	when appropriate.
	fair tests.		arguments.	Record data and
	Report & present			results of increasing
	findings from enquiries,			complexity using
	inc conclusions, causal			scientific diagrams
	relationships &			and labels,
	explanations of &			classification keys,
	degree of trust in			tables, scatter
	results, in oral & written			graphs, bar and line
	forms such as displays &			graphs.
	other presentations.			Use test results to
	Identify scientific			make predictions to
	evidence that has been			set up further
	used to support or			comparative and fair
	refute ideas or			tests.
	arguments.			Report & present
				findings from
				enquiries, inc

			conclusions, causal relationships & explanations of & degree of trust in results, in oral & written forms such as displays & other presentations. Identify scientific evidence that has been used to support or refute ideas or arguments.