
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	States of matter	Animals including humans	Sound Physics	Electricity	Living things and	Living things and
	<u>Chemistry</u>	Biology	1) Identify how sounds	Physics	their habitats	<u>their habitats</u>
	1) Compare and group	1) Describe the simple	are made, associating	1) Identify	Biology	Biology
	materials together,	functions of the basic parts	some of them with	common	1) Recognise that	1) Recognise that
	according to whether	of the digestive system in	something vibrating	appliances that	living things can	living things can be
	they are solids, liquids or	humans	2) Recognise that	run on electricity	be grouped in a	grouped in a variety
	gases	2) Identify the different types	vibrations from sounds	2) Construct a	variety of ways	of ways
	2) Observe that some	of teeth in humans and their	travel through a	simple series	2) Explore and use	2) Explore and use
	materials change state	simple functions.	medium to the ear	electrical circuit,	classification keys	classification keys to
′EAR	when they are heated or	3) Construct and interpret a	3) Find patterns	identifying and	to help group,	help group, identify
OU	cooled, and measure or	variety of food chains,	between the pitch of a	naming its basic	identify and name	and name a variety of
R	research the	identifying producers,	sound and features of	parts, including	a variety of living	living things in their
	temperature at which	predators and prey.	the object that	cells, wires,	things in their	local and wider
	this happens in degrees	Key vocabulary	produced it	bulbs, switches	local and wider	environment
	Celsius (°C)	Digestive system, digestion,	4) Find patterns	and buzzers	environment	3) Recognise that
	3) Identify the part	mouth, teeth, saliva,	between the volume of	3) Identify	3) Recognise that	environments can
	played by evaporation	oesophagus, stomach, small	a sound and the	whether or not a	environments can	change and that this
	and condensation in the	intestine, nutrients, large	strength of the	lamp will light in	change and that	can sometimes pose
	water cycle and	intestine, rectum, anus,	vibrations that	a simple series	this can	dangers to living
	associate the rate of	teeth, incisor, canine, molar,	produced it.	circuit, based on	sometimes pose	things
	evaporation with	premolars, herbivore,	5) Recognise that	whether or not	dangers to living	Key vocabulary
	temperature.	carnivore, omnivore,	sounds get fainter as	the lamp is part	things	Classification,
	Key vocabulary	producer, predator, prey,	the distance from the	of a complete	Key vocabulary	classification keys,
	Solid, liquid, gas, state	food chain	sound source increases.	loop with a	Classification,	environment,
	change, melting,	Working scientifically	Key Vocabulary	battery	classification keys,	habitat, human
	freezing, melting point,	Asking relevant questions	sound, source, vibrate,	4) Recognise that	environment,	impact, positive,
	boiling point,	and using different types of	vibration, travel, pitch	a switch opens	habitat, human	negative, migrate,
	evaporation,	scientific enquiries to answer	(high, low), volume,	and closes a	impact, positive,	hibernate
	temperature, water cycle	them.	faint, loud, insulation.	circuit and	negative, migrate,	Working
	Working scientifically	Gathering, recording,	Working scientifically	associate this	hibernate	scientifically
	Asking relevant	classifying and presenting	Asking relevant	with whether or	Working	Asking relevant
	questions and using	data in a variety of ways to	questions and using	not a lamp lights	scientifically	questions and using
	different types of	help in answering questions.	different types of			different types of

scientific enquiries to	Recording findings using	scientific enquiries to	in a simple series	Asking r
answer them	simple scientific language,	answer them	circuit	questio
Setting up simple	drawings, labelled diagrams,	Setting up simple	5) Recognise	using di
practical enquiries,	keys, bar charts, and tables.	practical enquiries,	some common	types of
comparative and fair	Reporting on findings from	comparative and fair	conductors and	enquirie
tests	enquiries, including oral and	tests	insulators, and	answer
Making systematic and	written explanations,	Making systematic and	associate metals	Setting
careful observations and,	displays or presentations of	careful observations	with being good	practica
where appropriate,	results and conclusions.	and, where appropriate,	conductors.	enquirie
taking accurate	Using straightforward	taking accurate	Key Vocabulary	compar
measurements using	scientific evidence to answer	measurements using	Electricity,	fair test
standard units, using a	questions or to support their	standard units, using a	electrical	Gatheri
range of equipment,	findings.	range of equipment,	appliance/device,	recordin
including thermometers		including thermometers	mains, plug,	classifyi
and data loggers.		and data loggers.	electrical circuit,	present
Recording findings using		Gathering, recording,	complete circuit,	a variet
simple scientific		classifying and	component, cell,	to help
language, drawings,		presenting data in a	battery, positive,	answeri
labelled diagrams, keys,		variety of ways to help	negative,	questio
bar charts, and tables.		in answering questions	connect/connecti	Recordi
Reporting on findings		Recording findings using	ons, loose	using si
from enquiries, including		simple scientific	connection, short	scientifi
oral and written		language, drawings,	circuit, crocodile	languag
explanations, displays or		labelled diagrams, keys,	clip, bulb, switch,	drawing
presentations of results		bar charts, and tables.	buzzer, motor,	diagram
and conclusions.		Reporting on findings	conductor,	bar cha
Using results to draw		from enquiries,	insulator, metal,	tables.
simple conclusions, make		including oral and	non-metal,	Reporti
predictions for new		written explanations,	symbol	findings
values, suggest		displays or	Working	enquirie
improvements and raise		presentations of results	scientifically	includin
further questions.		and conclusions.	Asking relevant	written
Using straightforward		Using results to draw	questions and	explana
scientific evidence to		simple conclusions,	using different	displays

g relevant	scientific enquiries to
ons and	answer them
different	Setting up simple
of scientific	practical enquiries,
ries to	comparative and fair
r them	tests.
g up simple	Gathering, recording,
cal	classifying and
ries,	presenting data in a
arative and	variety of ways to
sts.	help in answering
ring,	questions
ling,	Recording findings
ying and	using simple
nting data in	scientific language,
ety of ways	drawings, labelled
o in	diagrams, keys, bar
ering	charts, and tables.
ons	Reporting on findings
ding findings	from enquiries,
simple	including oral and
ific	written explanations,
age,	displays or
ngs, labelled	presentations of
ms, keys,	results and
arts, and	conclusions.
	Using results to draw
ting on	simple conclusions,
gs from	make predictions for
ries,	new values, suggest
ing oral and	improvements and
n	raise further
nations,	questions.
ys or	

answer questions or to	make predictions for	types of scientific	presentations of
support their findings.	new values, suggest	enquiries to	results and
	improvements and raise	answer them	conclusions.
	further questions.	Setting up simple	Using results to
	Identifying differences,	practical	draw simple
	similarities or changes	enquiries,	conclusions, make
	related to simple	comparative and	predictions for
	scientific ideas and	fair tests	new values,
	processes	Making	suggest
	Using straightforward	systematic and	improvements
	scientific evidence to	careful	and raise further
	answer questions or to	observations and,	questions.
	support their findings.	where	
		appropriate,	
		taking accurate	
		measurements	
		using standard	
		units, using a	
		range of	
		equipment,	
		including	
		thermometers	
		and data loggers.	
		Gathering,	
		recording,	
		classifying and	
		presenting data	
		in a variety of	
		ways to help in	
		answering	
		questions	
		Recording	
		findings using	
		simple scientific	

language,
drawings,
labelled
diagrams, keys,
bar charts, and
tables.
Reporting on
findings from
enquiries,
including oral and
written
explanations,
displays or
presentations of
results and
conclusions.
Using results to
draw simple
conclusions,
make predictions
for new values,
suggest
improvements
and raise further
questions.
Identifying
differences,
similarities or
changes related
to simple
scientific ideas
and processes
Using
straightforward

	scientific	
	evidence to	
	answer questions	
	or to support	
	their findings.	

Working scientifically LKS2

1) Asking relevant questions and using different types of scientific enquiries to answer them

2) Setting up simple practical enquiries, comparative and fair tests

3) Making systematic and careful observations and, where appropriate, taking accurate measurements using standard units, using a range of equipment, including thermometers and data loggers.

4) Gathering, recording, classifying and presenting data in a variety of ways to help in answering questions

5) Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables.

6) Reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions.

7) Using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions.

8) Identifying differences, similarities or changes related to simple scientific ideas and processes

9) Using straightforward scientific evidence to answer questions or to support their findings.