	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Light Physics	Electricity Physics	Evolution and	Evolution and	Animals including	Living things and
	1) Recognise that light	1) Recognise the impact of	inheritance Biology	<u>inheritance</u>	humans Biology	their habitats
	appears to travel in	diet, exercise, drugs and	1) Recognise that living	Biology	1) Recognise the	Biology
	straight lines	lifestyle on the way their	things have changed	1) Recognise that	impact of diet,	1) Describe how
	2) Use the idea that light	bodies function	over time and that	living things have	exercise, drugs	living things are
	travels in straight lines to	2) Identify and name the	fossils provide	changed over	and lifestyle on	classified into broad
	explain that objects are	main parts of the human	information about living	time and that	the way their	groups according to
	seen because they give	circulatory system, and	things that inhabited	fossils provide	bodies function	common observable
	out or reflect light into	describe the functions of the	the Earth millions of	information	2) Identify and	characteristics and
YEAR	the eye	heart, blood vessels and	years ago	about living	name the main	based on similarities
SIX	3) Explain that we see	blood	2) Recognise that living	things that	parts of the	and differences,
	things because light	3) Describe the ways in	things produce offspring	inhabited the	human circulatory	including
	travels from light sources	which nutrients and water	of the same kind, but	Earth millions of	system, and	microorganisms,
	to our eyes or from light	are transported within	normally offspring vary	years ago	describe the	plants and animals
	sources to objects and	animals, including humans.	and are not identical to	2) Recognise that	functions of the	2) Give reasons for
	then to our eyes	Key vocabulary	their parents	living things	heart, blood	classifying plants and
	4) Use the idea that light	Heart, pulse, rate, pumps,	3) Identify how animals	produce offspring	vessels and blood	animals based on
	travels in straight lines to	blood, blood vessels,	and plants are adapted	of the same kind,	3) Describe the	specific
	explain why shadows	transported, lungs, oxygen,	to suit their	but normally	ways in which	characteristics.
	have the same shape as	carbon dioxide, nutrients,	environment in	offspring vary	nutrients and	Key vocabulary:
	the objects that cast	water, muscles, cycle,	different ways and that	and are not	water are	Vertebrates, fish,
	them.	circulatory system, diet,	adaptation may lead to	identical to their	transported within	amphibians, reptiles,
	5) Use the idea of the	exercise, drugs and lifestyle	evolution.	parents	animals, including	birds, mammals,
	Earth's rotation to	Working scientifically	Key vocabulary	3) Identify how	humans.	invertebrates,
	explain the apparent	Report and present findings	Offspring, sexual	animals and	Key vocabulary	insects, spiders,
	movement of the Sun	from enquiries, including	reproduction, vary,	plants are	Heart, pulse, rate,	snails, worms,
	across the sky.	conclusions, causal	characteristics, suited,	adapted to suit	pumps, blood,	flowering and non-
		relationships and	adapted, environment,	their	blood vessels,	flowering.
	Key vocabulary:	explanations of and degree	inherited, species,	environment in	transported,	Working
	Straight lines, Light rays.	of trust in results, in oral and	fossils	different ways	lungs, oxygen,	scientifically
	(Y3 vocabulary - Light,	written forms such as	Working scientifically	and that	carbon dioxide,	Identify scientific
	Light source, Dark,	displays and other	Identify scientific	adaptation may	nutrients, water,	evidence that has
	Absence of light,	presentations.	evidence that has been	lead to evolution.	muscles, cycle,	been used to support

Plan different types of circulatory system, Transparent, used to support or **Key vocabulary** or refute ideas or refute ideas or Translucent, Opaque, scientific enquiries to answer Offspring, sexual diet, exercise, arguments. questions, including Shiny, Matt, Surface, reproduction, drugs and lifestyle arguments. Shadow, Reflect, Mirror, recognising and controlling Record data and results Working vary, variables where necessary. Sunlight, Dangerous) of increasing complexity characteristics, scientifically Plan different **Working scientifically** Ask simple questions and using scientific diagrams suited, adapted, recognise that they can be and labels, classification types of scientific Take measurements. environment. using a range of scientific answered in different ways keys, tables, scatter inherited, enquiries to equipment, with graphs, bar and line species, fossils answer questions, increasing accuracy and including graphs. Working precision, taking repeat scientifically recognising and readings when Identify scientific controlling evidence that has variables where appropriate. Record data and results been used to necessary. Report of increasing complexity support or refute and present using scientific diagrams ideas or findings from and labels, classification enquiries, arguments. keys, tables, scatter Record data and including graphs, bar and line results of conclusions, graphs. causal increasing Report and present relationships and complexity using findings from enquiries, scientific explanations of including conclusions, diagrams and and degree of trust in results, in causal relationships and labels. classification oral and written explanations of and degree of trust in results, keys, tables, forms such as in oral and written forms scatter graphs, displays and other such as displays and bar and line presentations. Take other presentations graphs. measurements, using a range of scientific equipment, with increasing

Г	Т	1	 1	
				accuracy and
				precision, taking
				repeat readings
				when appropriate.
				Record data and
				results of
				increasing
				complexity using
				scientific diagrams
				and labels,
				classification keys,
				tables, scatter
				graphs, bar and
				line graphs. Use
				test results to
				make predictions
				to set up further
				comparative and
				fair tests. Identify
				scientific evidence
				that has been
				used to support or
				refute ideas or
				arguments.

Working scientifically UKS2

- 1) Plan different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary.
- 2) Take measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate.
- 3) Record data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs.
- 4) Use test results to make predictions to set up further comparative and fair tests.
- 5) Report & present findings from enquiries, inc conclusions, causal relationships & explanations of & degree of trust in results, in oral & written forms such as displays & other presentations.
- 6) Identify scientific evidence that has been used to support or refute ideas or arguments.